Risk Assessment of Interconnected Infrastructure Systems Applications to Coastal and Delta regions

Prof. dr. ir. Bas Jonkman
Professor of Hydraulic Engineering, Delft University

Background

- (Infrastructure) Systems in modern societies are highly interconnected
- Effects of flood disasters may cascade:
 - From one system to the other
 - Outside the directly affected area
- Many existing design guidelines and risk assessments do not take into account these interconnections
- "single-systems" and / or "single-hazards"
- Objective: develop and demonstrate approaches for risk assessment for ICIS threatened by multiple hazards

Examples: NY, Fukushima & New Orleans

Japan, 2011

New Orleans, 2005

New York, 2012

RESIN Resilient and Sustainable Infrastructure Networks

THE AIM OF RESIN IS...

To create, validate, & apply improved Risk Assessment & Management (RAM) approaches for the high reliability management of resilient & sustainable interconnected critical infrastructure systems (ICIS).

Sherman Island infrastructures - levees, electric power & gas, transportation

Interactions associated with storms, levee breaching & flooding

Concepts: Interconnections

Hazard Dependence

Cascade

Interdependence

Methods and risk metrics

•<u>Methods:</u> Influence diagram and Bayesian networks

Systems characerization:

- Structures
- Operations and organizations
- Environment and hazards
- •Risk metrics: Risk, Resilience

•Dependence of events and cascading damage will increase risk (Pf, Cf)

Sherman Island Case Study

Power and Gas transmission lines

• Failure due to erosion of supports in breach zones?

Sherman Island Results (prelim.)

	Storm	Earthquake
Nr. of levee breaches	2	10
Probability of levee failure p.a. DRMS study (URS, 2009)	0.058	0.037
<u>Conditional probabilities</u>		
Road flooding	1	1
Powerline damaged	0.094	0.63
Gasline damaged	0.15	0.75
Power AND Gasline	0.068	0.62

prevention

Flood proofing / resilience

Sherman Island results

- Levee failure "adds" significant Pf to power and gas transmission systems.
- E.g. gas transmission line:
 - "normal" failure rate S.I.: 10⁻⁵ per year
 - Due to flooding ~10⁻² per year
- Co-location of power and gas transmisison and number of breaches important for risk

Sherman Island: delta interactions

Delta scale: multiple islands flood

Interdepencies

- Interactions difficult to take into account in static risk assessment
- Attempt to explore Markov chains for flood fighting

Case: Port of Rotterdam

- Analysis of vulnerability and criticality of functions
- •Cascading effects of flooding
- •concerns for "liquid bulk"

Concluding remarks

- Analysis of risks of interconnected systems is challenging, but important
- It is necessary to include multiple hazards and interconnections in design and management of high-reliability systems
- Cases, Levee failure leads to important risk "add-on"
 - In the CA delta
 - Critical facilities in the Netherlands
- ICIS Risk analysis requires a mix of disciplines and approaches / tools (risk analysis, phyiscal models, human organizational factors)

