

Assessing the impact of extreme weather events for single mode failures

- Climate Change and Weather Modelling Workshop
- TCD, Dublin, Ireland.
- 9th of November, 2015

Dr. Donya Hajializadeh

Roughan & O' Donovan Innovative Solutions (ROD-IS)

donya.hajializadeh@rod.ie

www.rain-project.eu

Outline

- Introduction
- Risk Assessment Framework- Technical Framework
 - Hazard Assessment
 - Vulnerability Assessment
 - Consequence Analysis
 - Risk Evaluation
- Risk Assessment Framework- Illustrative Example
 - Alpine Region Flash Flooding in 2003

Problem

 Europe is the 3rd most affected region in the world based on average 10 year disaster costs of €10 Billion

Solution

A systematic Risk Analysis framework that explicitly considers
 INfrastructure networks in response to <u>extreme weather events</u> and develops an optimization tool for series of <u>mitigation strategies</u>

- Risk arises from uncertainty of information
 - 100% certainty of information = p_f =0.0 or 1.0
- Uncertainty and variability of (random variables):
 - material properties
 - dimensions
 - environment
 - loads (and load combinations)
 - etc.
- Accuracy of predictive models
 - computer models, hazard scenarios, consequence models
- Inherent variabilities
 - natural hazards, weather, individual exposure to hazard

probabilistic

modelling

- MATRIX

- UNDP

- EC-TIGRA

- ESPON 1.3.1.

- Armonia

— ...

70

What is Different in RAIN?

- GIS-based Bayesian Probability Theory
 - Updating and optimising decisions and ranking Mitigation Strategies
- Multi Hazard/Multi vulnerability using Markovian Networks
 - Cascading effects
- (Inter)dependencies in Critical Infrastructure Network
 - System of system modelling
- Graph Theory
 - Critical hotspots in network
- Objective Ranking Tool
 - Similarity Judgement and Delphi Panel

Risk Assessment Framework

- Identifying Extreme weather Events
- Thresholds of Extreme weather Events
- Probability of Extreme weather Event
- Projection of Climate change

RAIN

- Identifying Critical infrastructure (CI)
- Indentifying (inter)dependencies
- Indentifying risks associated with CIs
- Vulnerability Analysis of CIs

RAIN

- Identifying Consequences
- Identifying key factors and weights
 - Objective Ranking Tool
- Consequence Quantification
 - F-N curves
 - Loss Exceedance Curve
 - Recovery time Analysis

This project is funded by the European Union

- Identifying Risk Scenarios
 - o Inference Network
- Quantifying Risks
 - Bayesian Probability Theory
 - Markovian Process
- Quantifying Benefits of Mitigation
 - Technical engineering solutions
 - Early warning systems

This project is funded by the European Union

Risk Assessment Framework

Example of Risk Assessment

Alpine Region

- Flash flooding in 2003
- 600 residents were evacuated
- Estimated damage of €190 million

Establishing the Context

RAIN

Establishing the Context

Step 1- Isolating the Case Study Area

Step 2- Identifying hazards, thresholds and corresponding probabilities

RAIN

RAIN

Step 3- Evaluation Probability of Extreme Weather Event

Step 4- Identifying vulnerable elements

RAIN

Vulnerability Assessment

21/55

This project is funded by the European Union

Step 4- Identifying vulnerable elements

22/55

This project is funded by the European Union

Step 5- Identifying critical locations

Step 5- Identifying critical locations

Step 5- Identifying critical locations

Step 6- Identifying (inter)dependencies

Step 6- Identifying (inter)dependencies

Step 7- Vulnerability Analysis and Fragility Curves

AS RA

Consequence Analysis

Step 8- Identifying Consequences

Consequences

- Societal
 - Fatalities
 - o Injuries
- Security
 - Fresh Water Supply
 - Food Supply
 - Energy Supply
- Economic
 - Cost of Repair/Replacement
 - o Cost of Labour
 - Availability of Materials
 - Age of the Existing Infrastructure

Consequence Analysis

Step 9- Identifying key factors and weights

Consequence Analysis

Step 10- Quantifying consequences

Step 11- Generating Inference Network

Step 12- Combining Infrastructure Network and Inference Network

Step 13- Distinguishing between Single Mode risks and Multi Mode Risks

Step 14- Identifying all risk scenarios with assigned probabilities and outcomes

Step 15- Developing Mitigation Strategies

 P_f = Probability of Failure t_i = Time

Step 19- Evaluate Risk for different Return periods and different Risk scenarios

Step 19- Evaluate Risk for different Return periods and different Risk scenarios

Step 19- Evaluate Risk for different Return periods and different Risk scenarios

Risk Evaluation

Risk Evaluation

Risk Evaluation

Risk Evaluation

the European Union

the European Union

RAIN Project

www.rain-project.eu

Donya Hajializadeh donya.hajializadeh@rod.ie

THANK YOU FOR YOUR ATTENTION.

