
ABSTRACT: Sensitivity analyses identify the importance of the model parameters and variables, providing a profound 

knowledge of the model. Most of the sensitivity analysis implies a local evaluation of the variability of the parameters. 

However, in those cases where the model involves a large number of degrees of freedom, these studies become highly time 

consuming and incapable of obtaining conclusive solutions. This paper presents a bi-phase approach, by integrating a local into 

a global sensitivity method. This methodology is recommended in those multidimensional models that make other approaches 

inefficient. The global phase is based on the statistical distribution of the variables, providing a robust and reliable solution, with 

low computational costs. With the aim of showing the potential of this approach, the method is applied to a complex existing 

model. This model aims to evaluate the resilience in transport networks when affected by an extreme weather event. As 

expected, this sensitivity analysis shows the large influence of the hazard intensity, but also shows how other variables, as the 

size of the area affected by the hazard and the role that the users play, can modify the values of the sensitivity analysis 

significantly.  
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1 INTRODUCTION 

A variety of extreme weather events, including river floods, 

rain induced landslides, droughts, winter storms, wildfire, and 

hurricanes, have threatened and damaged many different 

regions worldwide. These events have a devastating impact on 

critical infrastructure systems resulting in high social, 

economic and environmental costs. For this reason, it is 

imperative to develop a mathematical tool that is able to 

measure systematically the impacts of extreme weather events 

on infrastructures. 

 

Once the model for assessing the impacts of climatological 

hazards is developed, a sensitivity analysis should be carried 

out. A sensitivity analysis identifies the influence of each 

parameter on the outputs of the model, permitting a profound 

knowledge of its behaviour. In addition, the definition of the 

inputs will be more efficient after studying how these 

parameters modify and influence the model. 

 

Different methodologies to address a sensitivity analysis 

have been developed previously. These methods can be 

differentiated between local methods and global methods, the 

former focuses on estimating the local impact of a parameter 

on the model outputs. 

Global techniques are based on sampling methods which 

scan, in a random or systematic way, the complete range of 

the parameters involved in the model. Selection of the 

sampling strategy is crucial to the sensitivity analysis. 

 

This paper presents a bi-phase sensitivity analysis, by 

integrating a local into a global sensitivity method. This 

methodology is recommended in those multidimensional 

models that make other approaches inefficient. Especially, in 

those cases where the model involves numerous degrees of 

freedom, since other methodologies become highly time 

consuming and incapable to obtain conclusive solutions. 

 

The paper is organized as follows; Section 2 describes 

different methodologies to develop a sensitivity analysis. 

Section 3 introduces the proposed bi-phase sensitivity 

analysis; in Section 4, the model to evaluate resilience, used to 

apply the sensitivity analysis, is briefly explained, and in 

Section 5, a case of study is developed. Finally, in Section 6 

some conclusions and future research lines are drawn. 

 

2 SENSITIVITY ANALYSIS 

A sensitivity analysis can be defined as “the study of how 

uncertainty in the output of a model (numerical or otherwise) 

can be apportioned to different sources of uncertainty in the 

model input” [1].  

 

Some of the main reasons to develop a sensitivity analysis 

are highlighted:  

 

 The model parameters require additional research for 

strengthening the knowledge base, thereby the 

output uncertainty is reduced. 
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 Some model parameters might have a negligible 

contribution, therefore they can be eliminated from 

the final model. This would result in a reduction of 

the required computational time. 

 Bigger effort should be made in defining those 

variables and parameters with larger contribution 

into the model. The sensitivity analysis allows the 

identification of those important variables and 

parameters. 

 The consequences in the results can be determined 

when changing a given input parameter or variable. 

  

Different methodologies to analyse the sensitivity have been 

developed previously. 

 

An initial classification can differentiate between global and 

local methodologies, based on two different levels to carry out 

a sensitivity analysis.   

 

2.1 Local methodologies  

 

  A local sensitivity analysis evaluates sensitivity at one point 

in the parameter hyperspace. The local techniques aim to 

estimate the local impact of a parameter on the model output. 

A sensitivity coefficient is obtained, which is basically the 

ratio of the change in output to the change in input while all 

other parameters remain constant [2]. 

Some methodologies to develop a local analysis are, (a) 

differential sensitivity analysis, based on partial differentiation 

of the model in aggregated form; (b) one-at-a-time measures, 

which is one of the simplest method to develop a sensitivity 

analysis, is based on repeatedly varying one parameter at a 

time while holding the others fixed and (c) the sensitivity 

index, which calculates the output percentage difference when 

varying one input parameter from its minimum value to its 

maximum value. 

 

2.2 Global methodologies  

 

Global sampling methods scan in a random or systematic 

way the entire range of possible parameter values and possible 

parameter sets. These techniques analyze the whole parameter 

space at once. Some methodologies to develop a global 

analysis are, (a) simple random sampling, using Monte-Carlo 

analysis. This method works by generating a random value of 

the variable analysed and scaling this one to the target 

variable via its probability distribution. (b) Stratified 

sampling, which represents an improvement over simple 

random sampling by forcing the sample to conform to the 

whole distribution being analysed. 

 

Any reduction in the number of simulations required for a 

Monte-Carlo analysis will result in a reduction in 

computational effort, for that reason, some techniques have 

evolved and can outperform the simple random sampling.  

As an example, (c) the Latin-Hypercube simulation is a 

method of sampling that can be used to produce input values 

for estimation of expectations of functions of output variables 

[3]. The method works by dividing the input into strata and 

then generating samples so that the value generated for each 

parameter comes from a different stratum [4].  

 

3 METHODOLOGY 

  The applied methodology is an integration of two phases, a 

local into a global sensitivity method. This paper presents a 

combination of One-At-a-Time (OAT) for the local sensitivity 

and Latin Hypercube (LH) sampling for a global approach, 

[5]. 

3.1 Upper level approach 

  In order to address the first phase of this sensitivity 

methodology, a sampling strategy is carried out.  

The selected global sampling procedure is the LH that allows 

the reduction of the sample size. Due to the importance of the 

pairing procedure, the method Translational Propagation 

algorithm proposed by [6] has been implemented in this 

analysis. The main advantage of this methodology is that it 

requires virtually no computational time. When the sample is 

obtained, the local sensitivity analysis can be accomplished as 

follows. Considering that the total space is covered and the 

sample is a reliable and robust representation of the entire 

space, the model is evaluated for each point of the sample, 

using a local sensitivity analysis.  

 

3.2 Lower level approach 

On the other hand, the second phase of this methodology is 

based on a local technique to evaluate the sensitivity. 

According to the OAT technique, the analysis is performed by 

modifying every variable in each sample point in a percentage 

to calculate the corresponding model response in that close 

point. It is important to modify only one variable each time to 

identify the behaviour of the modified variable. Measuring the 

variation, according the OAT methodology, the sensitivity in 

each point is captured. 

This local method is as simple as efficient, however this 

process can become quite intensive with larger models. Then, 

instead of applying it in a large number of points to cover the 

entire range of the parameters, a global methodology has been 

chosen to obtain a sample of points that represents the 

different variables. 

The formulation to assess the sensitivity is based on the 

concept of derivative, that is 
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where Z is the set of variables involved in the model, x, is the 

modified variable and Y, the subset of variables which remain 

constant. R is model response calculated for the initial 

parameter set Z and Rd
+ is the model response when one 

parameter has been increased by a percentage, d. Sensitivity, 

denoted by ξ, is a dimensionless parameter. 

 

The percentage, d, is also a critical point, as small values 

can show the instabilities of the model, being this behavior not 



according with the tendency of the model. However, if this 

value is too large, the derivative loses its meaning. 

 

 

4 MODEL 

This methodology to develop a sensitivity analysis, is 

implemented for a complex model. In this case, the model 

evaluates the behaviour of a traffic network when an extreme 

weather event takes place, determining the resilience of the 

transport network ([7]). 

 

The most common definition of resilience was given by [6], 

as “the capacity to absorb shocks gracefully”, and a further 

description of this can be found in [10]. 

 

With the aim of quantifying the resilience, [7] propose a 

“Dynamic Equilibrium-Restricted Assignment Model” 

(DERAM), which allows the simulation of the network 

behaviour when a disruptive event occurs. This approach 

permits the inclusion of the stress level of the system together 

with the extra cost generated by the hazard. This model 

proposes that the network behaviour is restricted by a system 

impedance, α.  

The perturbation resilience is defined between (0, 100), 

100% being the optimum value. Moreover, a cost threshold is 

included to assume the system break-down. This value 

restricts the perturbation resilience and is the limit-state 

associated with the failure of the travel cost network due to 

the extreme overcost generated by a strong perturbation. 

Although the system could theoretically recover, it would 

imply an unacceptable effort by the system. 

  With the goal of improving the resilience of a network when 

affected by a hazard and having a better understanding of the 

effects of extreme weather events, the weaknesses of the 

system should be identified. Therefore, the resilience of a 

network can be enhanced with the improvement of the most 

influential variables of the model. With this aim, a sensitivity 

analysis is carried out. 

 

5 STUDY CASE  

This methodology is applied in a simple traffic network to 

analyze the sensitivity of a set of variables.  

 

 

Figure 1. Network. 

 

This traffic network consists of 5 nodes (cities), 16 links 

(roads) and 10 routes, (see Table 2). 

 

The set of variables used for the sensitivity analysis together 

with its characteristics are shown in Table 1.  

 

Table 1. Statistical distributions of the parameters 

 

 

Where βa and γa are parameters related to the traffic 

characteristics; h(t) is the hazard intensity whose range is 

(0,1), and pa  is the specific sensitivity of each link to a given 

hazard. For instance, in the case of pluvial flooding, pa 

depends on the catchment area, slope of the road, type of 

pavement, existence of element of protection, etc. Subscript a 

implies association with link a. 

 

For the following examples, the variables analysed will be the 

ones related with the hazard, i.e., h(t), pa and α. The sample 

size selected has been 25 points and the percentages of 

variation, d, are 1, 5, 10%. Figures 3-6 show the results 

associated with the percentage of 10%, since the results for 

the other percentages follow a similar tendency, excluding the 

case of the 1%, where some numerical instabilities of the 

model were identified. 

For a detailed study of the rest of the parameters, see [9]. 

 

The sensitivity analysis is carried out by presenting different 

scenarios, to figure out the influence of the climatological 

parameters in the system. Moreover, a second goal is to 

demonstrate that the sensitivity depends on other factors as the 

area affected by the hazard, or the different possibilities that 

the users have to avoid the hazard (redundancy of the 

network).  

 

Links Parameters Distribution Distribution 

parameters  

Affected 

 

No-affected 

 

h(t) 

 

h(t) 

Beta 

 

Deterministic 

α=1.2,β=3 

 

0.001 

Affected 

 

p a Beta α=1.2,β=2.5 

No-affected 

 

p a Deterministic 0.001 

All links 

 

        α Beta α=1.2,β=1.2 

Affected 

 

No-affected 

 

βa 

 

βa 

 

Gamma 

 

Deterministic  

k=2.9,θ=0.5 

 

0.83 

  

 

Affected 

 

γa 

 

Gamma 

 

k=7,θ=0.37 

 

No-affected γa 

 

Deterministic  4 

 



In order to reach this goal, two sections are presented, (a) 

depending on the area affected by the hazard and (b) 

depending on the redundancy of the network. 

 

5.1 Considering different affected areas.  

 

To increase the knowledge and the understanding of the 

effect of the intensity of the hazard, three cases has been 

developed, since the influence of this parameter is crucial. 

 

To that end, each of the cases has a different area damaged 

by the hazard, see Figure 2. First case (green area in Figure 2), 

only the links between the node 2 and node 3 are exposed to 

the climatological event. Second case (red area in Figure 2), 

half of the network is altered by the perturbation and, finally, 

in the third case, the entire network is affected.  

 

 

 

Figure 2. Areas affected by the hazard. 

 

 

 

Figure 3. Sensitivity of h, links damaged 13-16. 

 

 

Figure 4. Sensitivity of alpha and pa, links damaged 13-16. 

 

Analyzing the first case, where only the links 13-16 are 

affected by the hazard, it is evident that the intensity of the 

hazard, h(t) (Figure 3) has a larger sensitivity than pa (Figure 

4). In Figure 3, most of the points are within the range of 0 to 

-2. Some of them can reach higher values from -2 to -4. On 

the other hand, the sensitivity values of pa do not go over -1, 

remaining a high proportion below -0.5.  

It is noted that an increment in the values of h(t) and pa 

implies a reduction of the resilience, as evidenced by the 

negative sensitivity of these parameters.   

 

 

 

 

 

 

Figure 5. Sensitivity of h, half network damaged. 

 



 

Figure 6. Sensitivity of alpha and pa, half network damaged. 

 

In the second case, Figures 5 and 6 show the sensitivy of the 

three parameters, i.e, h(t), α and pa when half of the network is 

exposed to the hazard. As can be noted from the Figures, the 

sensitivity of all the parameters related to the hazard increases 

substantially. When compared with the previous example, the 

values are approximately 10 times larger for h(t) and pa and 

five times for α. This happens because the area damaged by 

the hazard is larger for the second case. In addition, the 

greater sensitivity of h(t) is corroborated with this example.  

 

 

 

Figure 7. Sensitivity of h, all links damaged. 

 

Figure 8. Sensitivity alpha and pa, all links damaged. 

 

Finally, the third case, shown in Figures 7 and 8, confirms 

that the values for the sensitivity of h(t) are even larger, since 

that the whole network is damaged by the hazard. 

Furthermore, the values of pa continue to be smaller that h(t).  

 

5.2 Considering the redundancy.   

 

In the previous cases, the focus was mainly in two 

parameters, h(t) and p. However, the parameter alpha, the 

system impedance, reaches the highest values, becoming a 

very relevant variable. It is noted that an increment of α 

implies an increment of the resilience.  

 

The influence of alpha on the resilience index is larger when 

users play an active role, that is, when they can improve their 

situation by changing their routes. 

 

Therefore, the sensitivity of this parameter is going to 

depend mainly in the options that the users have to change, 

that is, the redundancy of the system.  

 

Table 2. Routes, defined by the links. 

 

Routes Example 1  

 

Example 2  

1-13-14   

9-10-3   

2-11-12   

13-2 

3-4 

7-8 

5-15-16 

5-6-7 

9-10 

1-2 

 
 
 
 
 
 
 

 
 
 
 
 
 

 

 

 



To prove the considerable variability of this parameter, a 

second example has been introduced. For this new case, the 

number of routes has been reduced, as shown in table 2, using 

the case where half of the network is affected.  Consequently, 

the change options of the users have been reduced and the 

active role that they can play has been decreased.  

 

 

 

Figure 9. Sensitivity alpha and h, example 2. 

In Figure 9 is shown that when the change possibilities are 

reduced, the sensitivity of alpha decrease largely. In this case, 

example 2, the sensitivity of alpha is negligible, when in all 

the previous examples (see Figures 3-8), alpha is the most 

sensitive parameter.  

 

6 CONCLUSIONS 

The selection of an adequate methodology to analyse the 

sensitivity of the parameters should include a statistical 

approach to reduce the computational times and the number of 

chosen points to cover the entire range of the parameters. 

 

For that reason, a mixed methodology to analyse the 

sensitivity is proposed, which include local (One-At-a-Time) 

and global techniques (Latin Hypercube). This kind of 

methodology is justified when a large number of variables are 

involved, because local methods are very efficient but they do 

not cover the entire space; whereas, global methods provide a 

robust and reliable approach but the computational cost could 

be too high in complex models. 

 

In addition, the following aspects can be highlighted: 

 

- The pairing procedure known as the Translational 

Propagation algorithm, has been implemented, which 

requires minimal computational times. 

- The sensitivity analysis shows the important role of 

the hazard intensity.  

- The area affected by the hazard modifies the 

sensitivity of the hazard intensity substantially. 

Therefore, when the zone exposed to the hazard 

increases, the values of the sensitivity of this 

parameter rise.  

- The analysis reflects the significant influence of the 

system impedance, with the option of becoming as 

important as the hazards intensity. However, this only 

happens when users play an active role, that is, when 

they can improve their situation by changing their 

routes. If the users do not have route options and the 

redundancy of the network is insignificant, it  is 

demonstrated that the parameter is not relevant in the 

sensitivity analysis. 

 

Future research will provide an extension of this 

methodology, including aspects such as the topology of 

the network, the road capacity and the traffic demand. 
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