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ABSTRACT: Extreme weather events lead transportation systems to critical situations, which imply high
social, economical and environmental costs. Developing a tool to quantify the damage suffered by a traffic
network and its capacity of response to these phenomena is essential to reduce the damage of this hazard
and to improve the system. With this aim, a statistical analysis of the resilience of a traffic network under
extreme climatological events is presented. The resilience of a traffic network is determined by means
of a dynamic restricted equilibrium model together with a travel cost function that includes the effect of
weather on a traffic network. The cost function parameters related to the hazard effect are assumed as
random, following Generalized Beta distributions. Then, the fragility curves of the target traffic network
are defined using the Monte Carlo method and Latin Hypercube sampling. Fragility curves are a useful
tool to analyse of the vulnerability of a traffic network, assisting in the decision-making for the prevention
and response to the extreme weather events.

1. INTRODUCTION

The loss of serviceability of a traffic network occurs
several times during its service life. Nevertheless,
this problem should be limited to a certain level of
acceptable risk and should be easily recoverable.
Extreme weather events lead the transportation sys-
tems to anomalous situations and in some cases,
even to critical ones, which imply a high social,
economical and environmental cost. The quantifi-
cation of the damage suffered by a traffic network
and its capacity of response to these phenomena is
of great importance in order to identify and enhance
any network weaknesses, generating more efficient
designs.

In recent years a holistic concept has been used
to define the capacity of a system potentially ex-
posed to hazards, to adapt by resisting or chang-

ing in order to reach and maintain an acceptable
level of functioning (UN/ISDR (2004)), i.e. the re-
silience. Quantifying the resilience of a system is
not a straightforward task, because it includes as-
pects such as robustness, redundancy, resourceful-
ness, adaptability, ability to recover quickly, among
others (Bruneau et al. (2003); Murray-Tuite (2006);
Park et al. (2013)). Despite the complexity of this
task, some numerical models exist which quan-
tify the resilience of traffic systems (Ip and Wang
(2009); Vugrin et al. (2010); Henry and Ramirez-
Marquez (2012); Chen and Miller-Hooks (2012);
Nogal et al. (2014b)). Nevertheless, the disrup-
tive events considered in most of the existing lit-
erature are not related to climatological events but
modification of the traffic network characteristics.
With this purpose, some authors such as Lam et al.
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(2008) or Nogal et al. (2014a), propose some travel
cost functions to capture the effects of the weather
on the traffic network.

On the other hand, systems have some capac-
ity of adaptation to a certain degree of perturba-
tion, however, when a disruption occurs in a sud-
den and intense manner, critical states are gener-
ated. When the perturbation is produced by clima-
tological phenomena, the extreme weather events
will cause these critical states. According to the
latest Intergovernmental Panel On Climate Change
report (IPCC (2014)), confidence has increased that
some extremes will become more frequent, more
widespread and/or more intense during the 21st
century. In this present-day context, tools and
guidelines to assess the resilience of transportation
systems under extreme weather events becomes
necessary.

Due to the uncertainties inherent to this problem,
a statistical approach guarantees a more realistic
and valuable estimation of the response of the sys-
tems. Therefore, the aim of this paper is to present
a statistical analysis of the resilience of a traffic net-
work under extreme climatological events. The re-
silience of a traffic network is determined by means
of a dynamic restricted equilibrium model together
with a travel cost function that includes the weather
effect on a traffic network. As a result of the uncer-
tainties of the cost function parameters related to
the hazard effect, their values are assumed as ran-
dom. The Latin Hypercube is used to sample differ-
ent network models to be analysed under real and
synthetic climatological extreme events. Finally,
by means of the Monte Carlo Method the fragility
curves of the traffic system are obtained.

This is the first time fragility curves have been
used to analyse the resilience of a traffic system
under extreme weather events, since this statistical
tool has been traditionally used in the field of struc-
tures (Mander and Basöz (1999); Shinozuka et al.
(2000); Ghosh and Padgett (2010)). It is noted that
the response of a traffic system is highly non-linear
and its analysis becomes tough, especially when the
extreme weather is the source of the traffic network
disruption. For that reason, the fragility curves be-
come a useful tool to assist in the decision-making

for the prevention and response to the hazards.
The paper is organized as follows; Section 2 ex-

plains the main parameters required to estimate the
resilience of the system by means of the fragility
curves. The process to obtain these parameters are
described in detail in the next sections. Section 3
deals with the concept of resilience as well as the
dynamic model required to assess the resilience in-
dex. Section 4 explains how to determine the haz-
ard intensity and Section 5 gives an example to il-
lustrate the performance of the proposed method.
Finally, in Section 6 some conclusions and future
research paths are drawn.

2. FRAGILITY CURVES
In the context of transportation systems, the
fragility curves are a representation of the proba-
bility that a specific traffic network exceeds a given
damage state, as a function of the hazard degree.
The fragility function can be expressed as follows:

FDSi(HD) = P[DS > DSi|HD), (1)

where HD is a parameter indicating the hazard de-
gree and DS, a parameter indicating the damage
state.

Therefore, to obtain these curves, the following
variables have to been defined, (a) the hazard de-
gree; (b) the discrete Damage States DSi; and (c)
a variable that allows the quantification of the re-
sponse of the traffic network and, at the same time
that can be related to the damage state, i.e. the re-
silience. Consequently, the discrete damage states
are associated with different resilience levels.

Moreover, the parameter related to the hazard
degree has to integrate the main aspects affecting
the system resilience and, should be easily com-
puted. As indicated, the response of a traffic system
mainly depends on the rapidity with a hazard occurs
and its intensity. Considering these two aspects, the
slope of the cumulative curve of the hazard inten-
sity function has been successfully used to evaluate
HD.

By means of the Monte Carlo Method (MCM),
the cumulative distribution functions (CDF) of the
resilience associated with different values of HD
are obtained. Finally, the fragility curves are de-
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fined using the CDF for the resilience levels related
to the DSi.

In the following sections, obtaining the resilience
and the hazard intensity functions are explained in
depth.

3. RESILIENCE. A DYNAMIC RE-
STRICTED EQUILIBRIUM MODEL

To estimate the response of a traffic network un-
der extreme weather events it is necessary to con-
sider a parameter that represents the global system
response. With this aim the resilience has been
selected, which can be defined as the capacity of
a transportation network (a) to absorb disruptive
events, maintaining its level of service, and (b) to
return to a level of service equal to or greater than
the pre-disruption level of service within a reason-
able time frame. In this paper only the resilience in
the perturbation stage is analysed.

The assessment of the traffic network resilience
requires a dynamic approach. With this aim, Nogal
et al. (2014b) propose a “Dynamic Restricted Equi-
librium Assignment Model”, which allows the sim-
ulation of the network behaviour when a disruptive
event occurs.

Considering a connected traffic network defined
by a set of nodes and a set of links, for certain
origin-destination (OD) pairs of nodes, there are
given positive demands which give rise to a link
flow pattern when distributed through the network.
Then, a dynamic “equilibrium-restricted” state can
be obtained when, for each OD pair, the actual route
travel cost experienced by travelers entering during
the same time interval tends to be equal and min-
imal. Nevertheless the system could be unable to
reach this state in such a time interval. The rea-
son that the system does not reach an optimal (or
minimum cost) state in a given time interval is be-
cause the traffic network behaviour is restricted by
a system impedance to alter its previous state. This
impedance is due to the actual capacity of adapta-
tion to the changes, the lack of knowledge of the
new situation and the lack of knowledge of the be-
haviour of other users.

It is noted that when a disturbance takes place,
the travel costs increase. Nevertheless, these costs
can remain in low values if the users modify their

route choices, increasing the stress level of the sys-
tem. As this mechanism of response cost-stress is
limited, the larger the disruption, the lower the re-
maining response capacity. Therefore, the traffic
network behaviour when suffering a disruption can
be assessed by means of its exhaustion level (por-
tion of used resources), and its evolution with the
time by the exhaustion curve.

The proposed approach permits the inclusion of
both, the stress level of the system and the extra
cost generated by the hazard, when assessing the
exhaustion level of the network.

Following the concept of resilience as the capac-
ity of the network to absorb a shock, the perturba-
tion resilience evaluates how far the system is from
complete exhaustion. For that reason, Nogal et al.
(2014b) evaluate the perturbation resilience, χκ , as
the normalized area over the exhaustion curve, as
indicated:

χκ =

∫ tp1
tp0

(1−ψκ(t))dt

tp1− tp0
100, (2)

where tp0 and tp1 denote the initial and the final
time of the disruptive event, respectively; and ψκ ,
the exhaustion level associated with a given state of
perturbation κ . The perturbation resilience is de-
fined between [0,100]. Moreover, a cost threshold
is included to assume the system break-down. This
value restricts the perturbation resilience and allows
the comparison of different resilience indices.

Furthermore, a travel cost function that includes
the climatological events has to be considered.
More precisely, Nogal et al. (2014a) propose the
following expression

τa(t) = τ0a

1+ma exp

−
 βaXa(t)

Xmax
a

+ pah(t)

1−h(t)

−γa
 , (3)

where τa and τ0a are the actual travel time and the
free travel time, respectively; ma, βa and γa are
shape parameters; Xa(t) and Xmax

a are the actual
flow and the link capacity to provide a certain ser-
vice level; h(t) is the hazard intensity whose range
is [0,1), and pa is the specific sensitivity of each
link to this type of hazard. For instance, in the case
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of pluvial flooding, pa depends on the catchment
area, slope of the road, type of pavement, existence
of element of protection, etc. Subindex a implies
association with link a.

It is noted that when any hazard does not exist,
h(t) = 0, Eq. 3 becomes

τa(t) = τ0a

{
1+ma exp

[
−
(

βaXa(t)
Xmax

a

)−γ
]}

,

(4)
with only three parameters related to traffic fea-
tures.

We indicate that the knowledge of the OD de-
mands of a given network and their associated route
flows allows the calibration of the model, i.e. the
definition of these three parameters for the steady
state.

The parameter pa, which includes the local vul-
nerability of the network, can be defined based on
the previous experiences and expert opinion. Due
to the uncertainty involved, the proposed approach
assumes that pa is a random variable. More pre-
cisely, they are assumed to follow a Generalized
Beta Distribution pa ∼ GBeta(αa,θa; p0a, p f a),
where αa and θa are the shape parameters, and p0a
and p f a are the range of the parameter pa. This
distribution allows the definition of the random
variable on the interval [p0a, p f a] (Castillo et al.
(2012)). After that, by means of the Latin Hyper-
cube Sampling (LHS), different networks are mod-
elled and analysed under real and synthetic clima-
tological extreme events.

4. EXTREME WEATHER EVENTS
The definition of extreme event depends on the re-
sponse capacity of the system to this event. For in-
stance, regarding the rainfall, one of the criteria for
defining “extreme weather” is associated with the
rainfall level which causes floods; and this level de-
pends on the drainage systems, among others. It
is highlighted that this extreme rainfall is not nec-
essarily related to its return period. It has been
demonstrated that the diary precipitation with the
largest return period does not always produce the
worst flood, as constant, mild rainfall can be even
more damaging.

In this section it is explained how to determine
the hazard intensity for the case of the pluvial flood
due to long periods of rain as well as intense show-
ers. With this aim, the data of the daily precipitation
of Valencia (Spain) has been selected because of the
annual weather phenomenon called “cold drop”1,
which causes important floods.

The daily precipitation provided by the Euro-
pean Climate Assessment Dataset (ECA (2014))
has been used to compute the cumulative precipita-
tion and the cumulative drainage in Valencia from
1961 to 2010. The cumulative drainage has been
obtained by assuming an average drainage capacity,
450 mm/day, and 148.5 mm/day when the soil be-
comes saturated. When the capacity of drainage is
exceeded by the rainfall amount, the flood occurs.
For example, Figure 5, which illustrates the daily
precipitation, cumulative precipitation and cumula-
tive drainage in Valencia from 2007 to 2010, shows
four floods in this period of time, two in 2007, one
in 2008 and other in 2009. It is noted that the
drainage capacity has been estimated by comparing
the time and duration of the obtained hazards with
the real historical events registered.
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Figure 1: Daily precipitation, cumulative precipitation
and cumulative drainage in Valencia.

In order to correctly define the fragility curves,
it is necessary to have a great amount of data of
hazards, nevertheless, due to the extreme nature of

1This phenomenon is associated with extremely violent
downpours and storms, but not always accompanied by sig-
nificant rainfall. This phenomenon usually lasts a very short
time, from a few hours to a maximum of four days.
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these events, this requirement is fulfilled with dif-
ficulty. To overcome this obstacle, synthetic haz-
ards have been proposed. This synthetic response
has been generated using real data, and taking into
account aspects as the intensity of the hazard, dura-
tion, and the rapidity at which the peaks occur.

Figure 2 shows in continuous red colour the 77
pluvial flooding cases observed since 1961 to 2010;
and the dashed blue curves represent the 100 syn-
thetic curves considered in this paper.
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Figure 2: Real and synthetic curves of the pluvial
floods obtained from Valencia historical data.

5. ILLUSTRATIVE EXAMPLE
To facilitate the understanding of the proposed
method, we consider an illustrative traffic network
which consists of 5 nodes and 16 links as indicated
in Figure 3. Within the set of possible combina-
tions, only 8 routes and 5 OD pairs have been con-
sidered in this simple example.

Table 1 shows the average OD demand for differ-
ent OD pairs, the routes defined by their links and
the route flow associated with the equilibrium state
(without any hazard).

Initially the system is in equilibrium, i.e. all
users have selected those routes that actually mini-
mize their route travel time. The route flow associ-
ated with this equilibrium state is given in Table 1.
When the hazard occurs, the system tries to reach a
new equilibrium state. However, due to the system
impedance this equilibrium is not reached immedi-
ately.
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Figure 3: Illustrative network showing nodes and links.

Table 1: OD demand, routes and equilibrium route
flow.

OD Average Route Links Equilibrium
Demand Route Flow

1 - 4 100 1 1 13 14 55.416
2 9 10 3 44.584

2 - 1 50 3 2 11 12 50.000
2 - 5 50 4 13 2 50.000
5 - 1 100 5 3 4 0 50.464

6 7 8 0 49.536
1 - 2 100 7 5 15 16 45.727

8 5 6 7 54.273

The parameters of the cost function given by the
equation 3 are indicated in Table 2.

With these values, and using the MCM, different
traffic networks have been exposed to the real and
the synthetic hazards shown in Figure 2.

In each simulation, the link travel cost functions
are computed using the link parameters obtained by
LHS. Figure 4 shows the link travel cost functions
of a selected set of links for different levels of haz-
ard. The lower green line represents the link travel
time associated with the state without hazard2, the
upper blue curve provides the link travel time func-
tion associated with the maximum level of hazard.
The red dashed line marks the Xmax,a value and the
grey band indicates the actual range of link flow

2This curve roughly matches with the well known BRP
function for ratios xa

Xmax,a
< 1.2)
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Figure 4: Link travel cost functions for different levels of hazard.

during the process stability-hazard-stability. For in-
stance, it can be appreciated that in link 1, whose
parameter p = 0.32 in this simulation, the flow rate
varies from 50.056 users to 46.44 users as a con-
sequence of the hazard. The link travel cost before
the hazard is 0.12 hours and when the hazard level
is h = 0.43, the link travel cost becomes 0.74 hours.

Subsequently, the resilience associated with each
hazard is assessed using Eq. (2) by means of the
stress level and the cost function, as shown Fig-
ure 5.

After applying the MCM, the CDF of the re-
silience index for different hazard degrees are com-
puted, as shown by Figure 6.

For this traffic network, four discrete damage
states have been considered, viz., negligible, light,
light to moderate and moderate, associated with the
resilience levels 95%, 85%, 75% and 65%, respec-
tively. Finally, making use of these resilience lev-
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Figure 5: Example of resilience assessment.

els, the fragility curves of the traffic network are ob-
tained, as Figure 7 illustrates. Based on the analysis
of the fragility curves it can be stated, for instance,
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Table 2: Parameters of the cost function. ma = 7; βa =
0.9 and γ = 5.5.

Free flow p
Link speed Capacity Generalized Beta

(km/h) (users) αa θa p0a p0 f
1 120 90 3 2 0.2 0.6
2 120 90 10 10 0.15 0.25
3 120 90 2 3.5 0.1 0.4
4 120 90 3 2 0.2 0.6
5 120 90 3 2 0.2 0.6
6 120 90 2 3.5 0.1 0.4
7 120 90 10 10 0.15 0.25
8 120 90 3 2 0.2 0.6
9 90 60 3 2 0.2 0.6
10 90 60 2 3.5 0.1 0.4
11 90 60 10 10 0.15 0.25
12 90 60 3 2 0.2 0.6
13 90 90 10 10 0.15 0.25
14 90 60 2 3.5 0.1 0.4
15 90 60 2 3.5 0.1 0.4
16 90 60 10 10 0.15 0.25
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Figure 6: CDF of the resilience for different hazard
degrees.

that a hazard of HD = 0.22, there is a 98% proba-
bility that the damage is worse than light, and 8%
probability that the damage is worse than light-to-
moderate.

6. CONCLUSIONS
In this paper the fragility curves have been used to
determine the traffic network response to a extreme
weather event. This representation of the probabil-
ity that a specific traffic network exceeds a given

Figure 7: Fragility curves of the traffic network.

damage state, is given as a function of the haz-
ard degree. The resilience has been used to define
the damage states and the hazard degree has been
computed as the normalized slope of the cumula-
tive curve of the hazard intensity function.

Additionally, the following conclusions can be
drawn from this paper:

1. A Dynamic Restricted Equilibrium Assign-
ment Model has been used to compute the re-
silience of the system. This model takes into
account important and complex features of the
traffic network such as the stress level, the
vulnerability and the capacity of adaptation.
Moreover, this model allows a dynamic anal-
ysis, which is a key aspect when considering
climatological events.

2. By means of a travel cost function which cap-
tures the consequences of the extreme weather
on the traffic network, time-varying hazards
have been introduced coupled with the effect
of these hazards on each specific link.

3. The cost function parameter pa, which in-
cludes the local vulnerability of the network,
is assumed as a random variable following a
Generalized Beta Distribution. This assump-
tion permits the definition of the random vari-
able on the interval [p0a, p f a].

4. The joined probability of the involved param-
eters is computed by using the Monte Carlo
Method together with the Latin Hypercube
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Sampling.
5. The uncertainties of the involved parameters

make the deterministic approaches inadequate
to evaluate the response of a traffic system to
this type of disruption. Therefore the prob-
abilistic methods are required to provide a
more realistic analysis. More precisely, the
fragility curves are a useful tool to evaluate the
vulnerability of a traffic network, assisting in
the decision-making for the prevention and re-
sponse to the hazards.

Finally, in following publications, this method-
ology shall be applied to real networks. However,
due to the social sensitivity of the results on real
networks, this task has to be addressed carefully.
On the other hand, the analysis of fragility curves
considering recovery resilience has yet to be car-
ried out. This study will imply a new definition of
the HD parameter, since the recovery of the traffic
network depends on different aspects.
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