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1 Introduction

Freezing rain (FZRA) is a potentially high-impact
weather phenomenon. In this work, future estima-
tions of FZRA occurrence were calculated based on an
ensemble of six EURO-CORDEX regional climate

models (RCMs) with RCP4.5 and RCP8.5 emission
scenarios. A precipitation typing algorithm was ap-
plied to RCM data to identify FZRA. The occurrence
of FZRA events above 5 mm/day and 25 mm/day

impact thresholds were then evaluated. Finally the
changes in annual probabilities of FZRA were calcu-
lated between the baseline and future periods.

2 Materials and methods

RCM data from six RCMs were used in this study
(Tables 1, 2). FZRA events were identi�ed follow-
ing the methodology of Kämäräinen et al. [2016].
The method identi�es the traditional FZRA forma-
tion mechanism, which requires the simultaneous oc-
currence of (1) a near-surface cold layer, (2) a melt-
ing layer above the cold layer, and (3) precipitation.
The impact threshold values, 5 mm/day and 25
mm/day, were selected based on needs of critical in-
frastructure (Vajda et al. [2015]).

Table 1: Regional modelling institutes (columns) versus driv-
ing general circulation models (rows).

SMHI MPI-CSC KNMI

EC-Earth X

HadGEM2-ES X

CanESM2 X

MPI-M-LR X

IPSL-CM5A-MR X

NorESM1-M X

Table 2: Description of the dimensions and variables of the
study.

Property Value(s)

Spat. coverage Europe
Time res. 6H
Spatial res. 0.44◦

Levels Sfc, 925, 850, 700
Scenarios RCP4.5, RCP8.5
Periods 1971�2000, 2021�2050, 2071�2100
Variables T, RH, Pr, psfc

3a Present-day climate

Compared to previous studies (Kämäräinen et al.
[2016]), the multi-model mean of this work pro-
duces a similar spatial distribution of climatological
monthly mean number of FZRA events in Europe.
As an example, the result from one model can be
seen in Fig. 1.
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Figure 1: Mean monthly number of 6-hourly FZRA events
in 1971-2000 according to the SMHI RCM, forced with the
NorESM1-M global model.

Annual probability of severe FZRA events is high-
est in S-E Europe and especially over the Balkan
Peninsula; there

• P(5 mm/day/year) = 5 � 50 %

• P(25 mm/day/year) = 0 � 5 %

3b Projected changes

• FZRA of 5 mm/day is quite common in Eu-
rope, but 25 mm/day is so rare that no
events were found in most of the grid cells and
therefore the direct calculation of changes was
not possible.

• Changes in 5 mm/day probabilities were de-
pendent on the future period and emission
scenario so that the strongest signals can be
seen with RCP8.5 at the end of the century
(Fig. 2).

• The current method con�rms the earlier
results attained with a coarser method
(Kämäräinen et al. [2015]): FZRA is expected
to increase in N-E Europe and decrease in cen-
tral parts.
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Figure 2: Projected multi-model mean changes in annual
probability of at least one 5mm/day FZRA event (percent-
age points). Statistical signi�cance (P<5%) denoted with
dots.

3c Analysis of T pro�le
To explain the climate changes seen in the results, a
simpli�ed analysis was performed for the T2m and
T850. These variables together roughly describe
the vertical temperature pro�le and the cold layer
� melting layer structure. Figure 3 shows the 2-
dimensional probability distributions for grid cells
with positive or negative changes in occurrences of
FZRA (red and blue areas in Fig. 2).
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Figure 3: Kernel density estimates of near-surface temper-
atures (x-axis) and temperatures at 850 hPa level (y-axis) in
Dec-Jan-Feb. Red rectangle indicates the area where FZRA
is possible. Empirical probabilities are shown in boxes.
Present-day and end-of-century periods are shown on left
and right columns; N-E Europe and C Europe on top and
bottom rows respectively.

Climate change shifts the 2-dimensional probability
distribution of T2m vs. T850 di�erently in di�erent
parts of Europe: In N Europe the present-day win-
ters are so cold that occurrence of a melting layer
is very rare, but becomes more frequent in future.
In C Europe the melting layer is common but the
occurrence of the near-surface cold layer decreases
towards future.

4 Conclusions

1. RCM mean was able to capture the ob-
served monthly climatological distribu-
tion of FZRA.

2. 5 mm/day events are expected to in-
crease in N and decrease in C Europe;
25 mm/day events are so rare that their
changes are di�cult to estimate at grid-
cell scale.

3. Changes in vertical T pro�le explain the
projected changes in FZRA occurrence.

4. Projected changes in the probability of
FZRA events imply new challenges for
risk management and climate change
adaptation for critical infrastructure.
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