

Future projections of freezing rain climatology in Europe

Matti Kämäräinen, Andrea Vajda, Otto Hyvärinen, Ilari Lehtonen, and Kirsti Jylhä matti.kamarainen@fmi.fi

1 Introduction

LMATIETEEN LAITOS Meteorologiska institutet

INNISH METEOROLOGICAL INSTITUTE

Freezing rain (FZRA) is a potentially high-impact weather phenomenon. In this work, future estimations of FZRA occurrence were calculated based on an ensemble of six **EURO-CORDEX** regional climate

models (RCMs) with **RCP4.5** and **RCP8.5** emission scenarios. A precipitation typing algorithm was applied to RCM data to identify FZRA. The occurrence of FZRA events above **5 mm/day** and **25 mm/day**

impact thresholds were then evaluated. Finally the changes in annual probabilities of FZRA were calculated between the baseline and future periods.

2 Materials and methods

RCM data from six RCMs were used in this study (Tables 1, 2). FZRA events were identified following the methodology of Kämäräinen et al. [2016]. The method identifies the traditional FZRA formation mechanism, which requires the simultaneous occurrence of (1) a near-surface cold layer, (2) a melting layer above the cold layer, and (3) precipitation. The impact threshold values, **5 mm/day** and **25 mm/day**, were selected based on needs of critical infrastructure (Vajda et al. [2015]). **Table 1:** Regional modelling institutes (columns) versus driving general circulation models (rows).

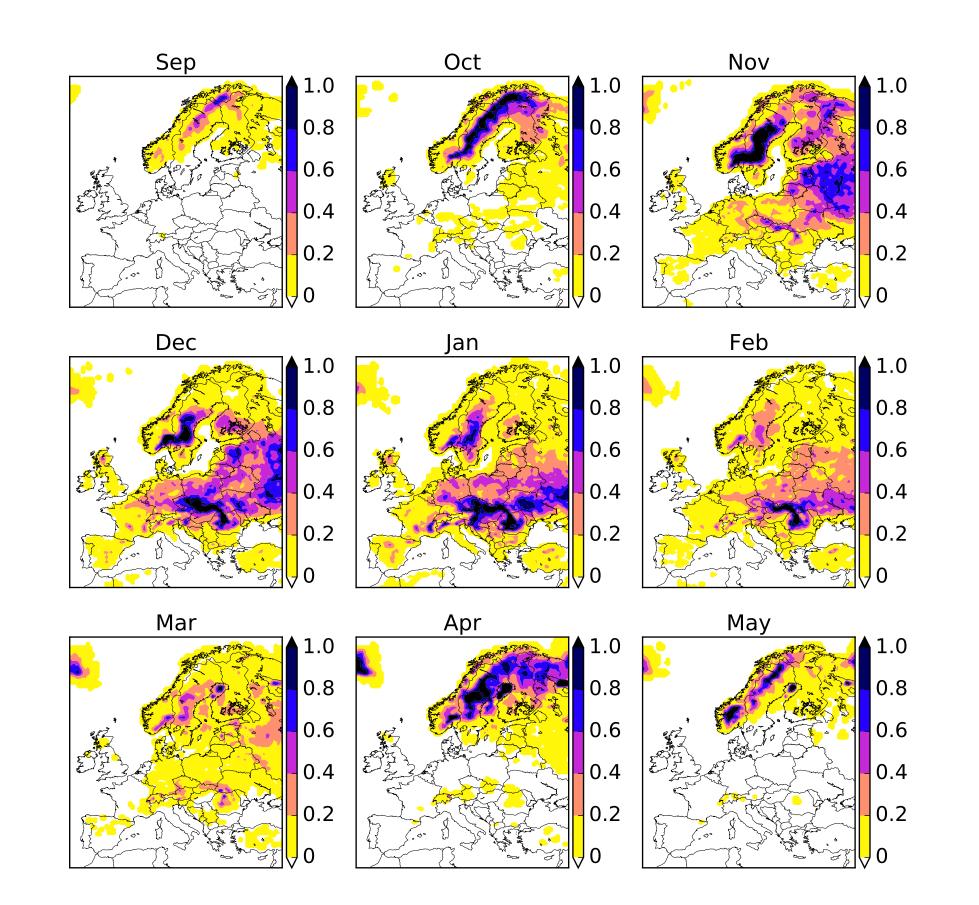
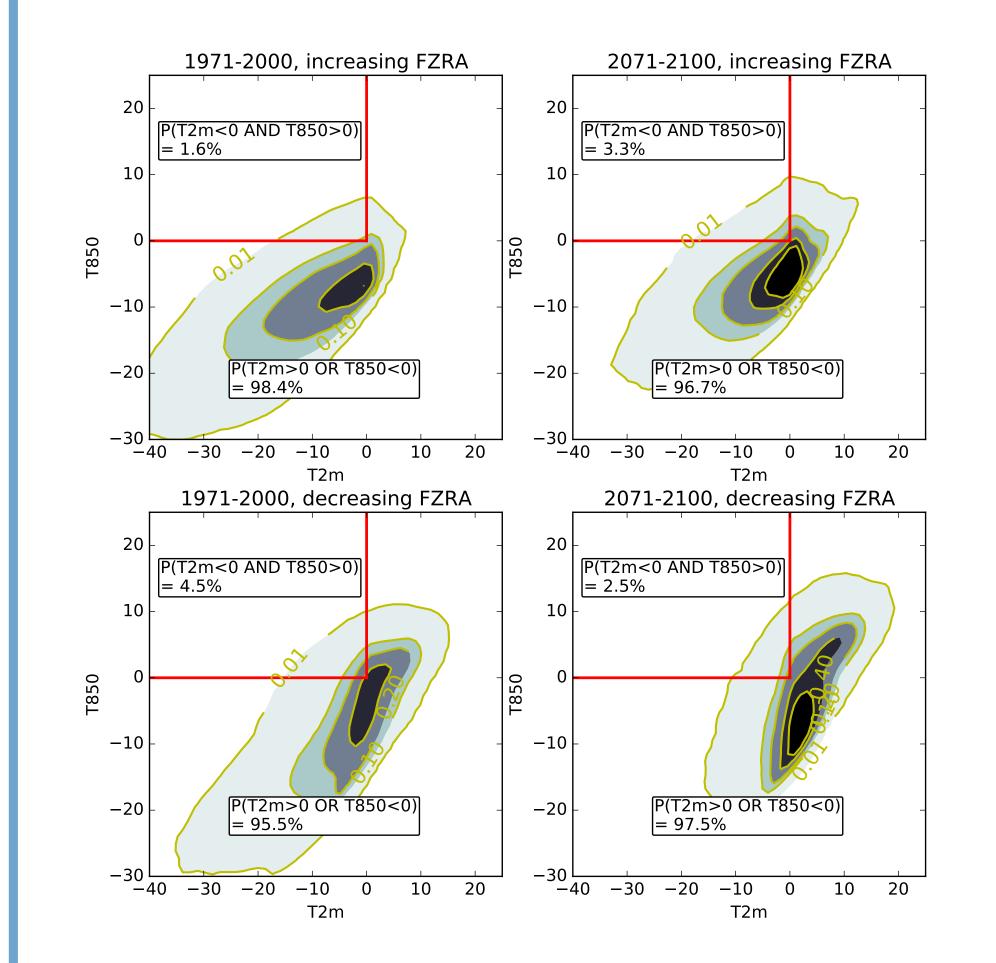

	SMHI	MPI-CSC	KNMI
EC-Earth			X
HadGEM2-ES			\mathbf{X}
CanESM2	\mathbf{X}		
MPI-M-LR		\mathbf{X}	
IPSL-CM5A-MR	\mathbf{X}		
NorESM1-M	\mathbf{X}		

Table 2: Description of the dimensions and variables of the study.

Property	Value(s)
Spat. coverage Time res. Spatial res. Levels Scenarios Periods	Europe 6H 0.44° Sfc, 925, 850, 700 RCP4.5, RCP8.5 1971–2000, 2021–2050, 2071–2100
Variables	T, RH, Pr, p_{sfc}

3a Present-day climate

Compared to previous studies (Kämäräinen et al. [2016]), the multi-model mean of this work produces a similar spatial distribution of climatological monthly mean number of FZRA events in Europe. As an example, the result from one model can be seen in Fig. 1.



3b Projected changes

- FZRA of **5 mm/day** is quite common in Europe, but **25 mm/day** is so rare that no events were found in most of the grid cells and therefore the direct calculation of changes was not possible.
- Changes in **5 mm/day** probabilities were dependent on the future period and emission scenario so that the strongest signals can be seen with RCP8.5 at the end of the century (Fig. 2).
- The current method confirms the earlier results attained with a coarser method (Kämäräinen et al. [2015]): FZRA is expected

3c Analysis of T profile

To explain the climate changes seen in the results, a simplified analysis was performed for the T2m and T850. These variables together roughly describe the vertical temperature profile and the cold layer – melting layer structure. Figure 3 shows the 2dimensional probability distributions for grid cells with positive or negative changes in occurrences of FZRA (red and blue areas in Fig. 2).

Figure 1: Mean monthly number of 6-hourly FZRA events in 1971-2000 according to the SMHI RCM, forced with the NorESM1-M global model.

Annual probability of severe FZRA events is highest in S-E Europe and especially over the Balkan Peninsula; there

- P(5 mm/day/year) = 5 50 %
- P(25 mm/day/year) = 0 5 %

4 Conclusions

to increase in N-E Europe and decrease in central parts.

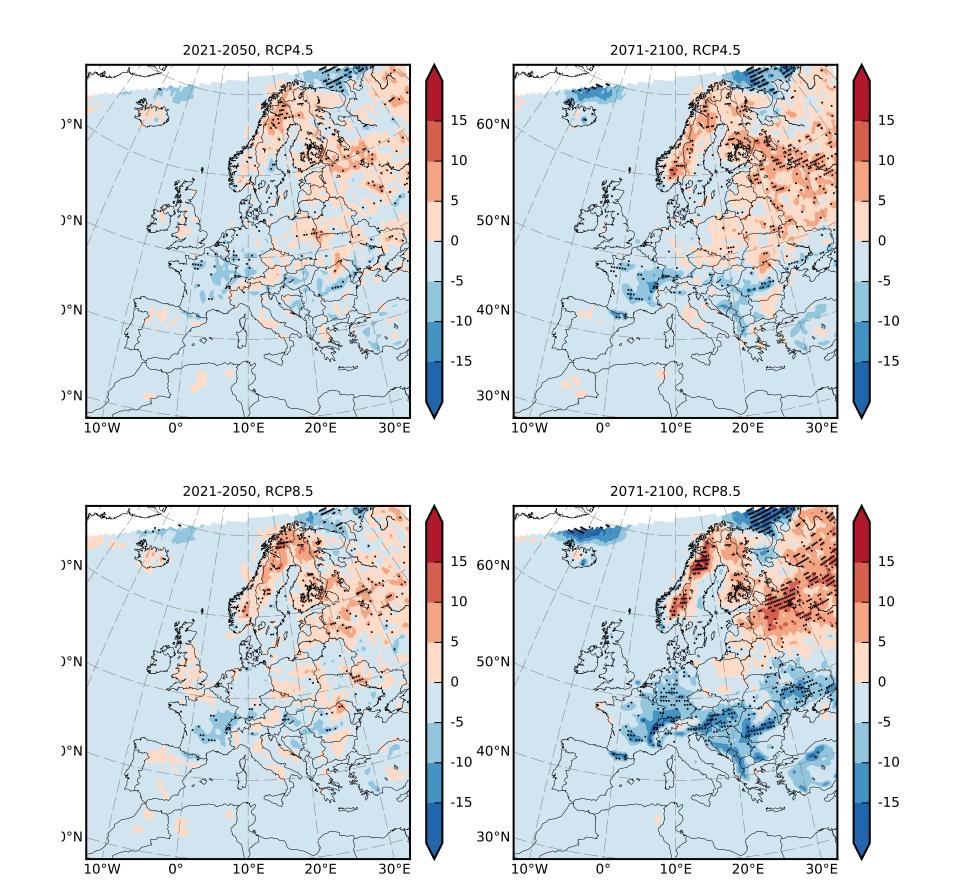


Figure 2: Projected multi-model mean changes in annual probability of at least one 5 mm/day FZRA event (percentage points). Statistical significance (P<5%) denoted with dots.

Figure 3: Kernel density estimates of near-surface temperatures (x-axis) and temperatures at 850 hPa level (y-axis) in Dec-Jan-Feb. Red rectangle indicates the area where FZRA is possible. Empirical probabilities are shown in boxes. Present-day and end-of-century periods are shown on left and right columns; N-E Europe and C Europe on top and bottom rows respectively.

Climate change shifts the 2-dimensional probability distribution of T2m vs. T850 differently in different parts of Europe: In N Europe the present-day winters are so cold that occurrence of a melting layer is very rare, but becomes more frequent in future. In C Europe the melting layer is common but the occurrence of the near-surface cold layer decreases towards future.

- 1. RCM mean was able to capture the observed monthly climatological distribution of FZRA.
- 2. 5 mm/day events are expected to increase in N and decrease in C Europe; 25 mm/day events are so rare that their changes are difficult to estimate at gridcell scale.
- 3. Changes in vertical T profile explain the projected changes in FZRA occurrence.
- 4. Projected changes in the probability of FZRA events imply new challenges for risk management and climate change adaptation for critical infrastructure.

References

M. Kämäräinen, K. Jylhä, A. Vajda, H. Gregow, P. Jokinen, and S. Saku. Identifying freezing rain events in European gridded climate datasets. *EMS Annual Meeting Abstracts*, 2015. URL http://meetingorganizer.copernicus. org/EMS2015/EMS2015-32.pdf.

M. Kämäräinen, O. Hyvärinen, K. Jylhä, A. Vajda, S. Neiglick, J. Nuottokari, and H. Gregow. A method to estimate freezing rain climatology from ERA-Interim reanalysis over Europe. *Nat. Hazards Earth Syst. Sci. Discuss.*, 2016. doi: 10.5194/nhess-2016-225.

A. Vajda, I. Juga, M. Kämäräinen, I. Lehtonen, and H. Gregow. Assessment of impact indicators for extreme winter phenomena considering critical infrastructure. *EMS Annual Meeting Abstracts*, 2015. URL http://meetingorganizer.copernicus.org/EMS2015/ EMS2015-388.pdf.

Acknowledgements

This work has received funding from the EU-FP7 project RAIN (grant number 608166) and from the Finnish Nuclear Power Plant Safety Research Programme 2015-2018 (SAFIR EXWE). We acknowledge RCM modelling groups from SMHI, MPI-CSC, and KNMI for providing the high-resolution data used in the project, and TU Delft for storing the project results (available at https://data.4tu.nl/repository/collection: ab70dbf9-ac4f-40a7-9859-9552d38fdccd).